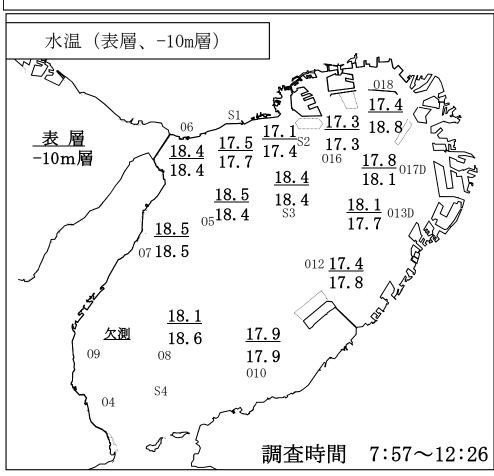
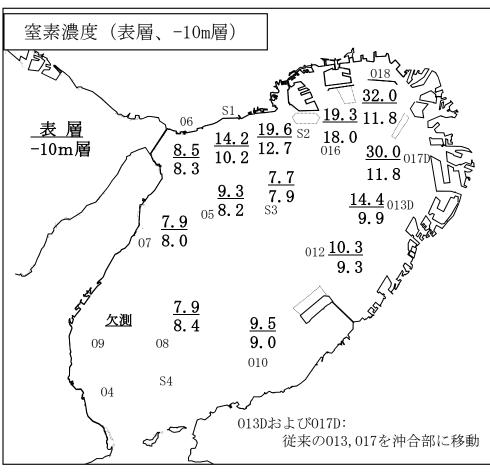
大阪湾漁場環境速報

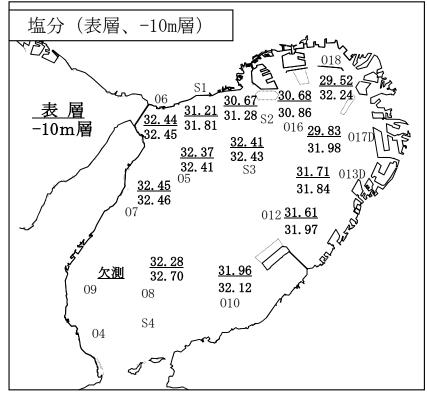

窒素は全域において概ね8μg-at/L以上となっており、各ノリ漁場周辺での栄養塩は十分量で推移しています。神戸市沿岸東部で数種の珪藻が散見されましたが、今のところすぐに問題となる発生量ではなく、それ以外の海域において珪藻は少し確認される程度と少ない状況でした。

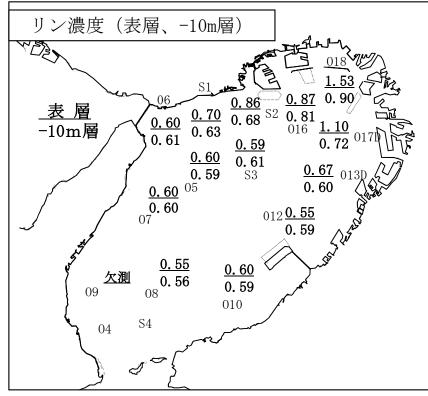

※調査点09は波浪により欠測

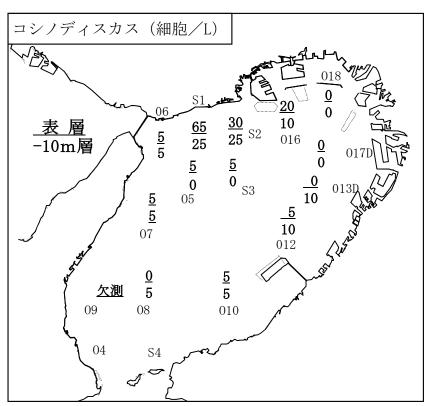
<u>(水温)</u> 表層は湾内17~18℃台で、平均**17.9**℃。平年比約1.0℃高い。-10m層は平均**18.0**℃(平年比+0.2℃)。

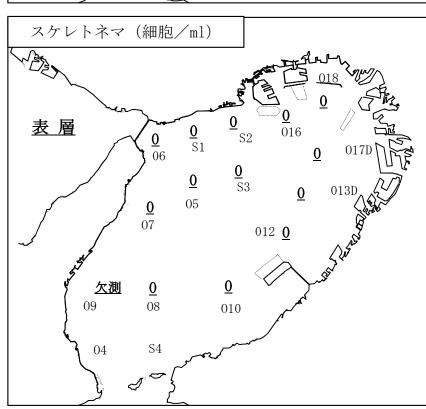
(塩分) 表層平均**31.81**psu(平年 31.88)。−10m層平均**32.05**psu(平年 32.24)。

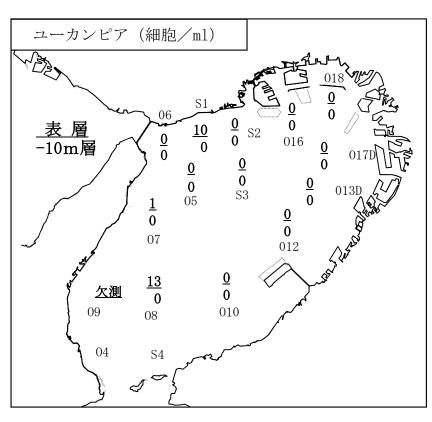
<u>(栄養塩、他)</u>表層の窒素は平均11.4 μ g-at/L、リンは平均0.65 μ g-at/L。窒素は平年より高くリンは平年並。-10m層(平均)は、窒素10.0 μ g-at/L、リン0.63 μ g-at/L。神戸市沿岸の東部域でコシノディスカス (C. wailesii) 及びコシノディスカスの一種で小型のもの、連鎖状の珪藻等が確認された。またこの海域の水色はやや黒色がかっており、海水サンプルには繊毛虫のメソディニウムが散見されるが、スケレトネマやキートセロスといった小型珪藻はほとんど確認されず栄養塩(窒素・リンとも)は十分量の値を示している。






平成30年12月5日発行 兵庫のり研究所


上段(今回値)	平成30年12月4日調査
中段(昨年値)	欠測
下段 (平年値)	12月上旬


調査	水温	塩分	三態窒素	燐酸
地点	(℃)	(psu)	(μ g-at/L)	(μg-at/L)
0.4				
04				
	18. 1	32. 82	6. 4 9. 3	0. 56
٥٢	18. 5	32. 37	9.3	0. 60
05		00.11		0.00
	17. 3	32. 14	7.0	0.66
06	18. 4	32. 44	8.5	0.60
UO	17.0	00.15		0.00
	17.3	32. 15	7. 4 7. 9	0.68
07	18.5	32. 45	7.9	0.60
07	17 -	00.10	7.0	0.07
	17. 5	32. 19 32. 28	7. 0 7. 9	0. 67 0. 55
08	18. 1	32. 20	7.9	0. 55
UO	17 0	20 40	7 0	0.04
	17.8	32. 43	7.0	0.64
09				
Uθ	17 0	20 50	CF	0.00
	17. 9 17. 9	32. 59 31. 96	6. 5 9. 5	0. 60 0. 60
010	17.9	31.90	9. 0	0.00
010	16 7	21 02	0 0	0.67
	16. 7 17. 4	31. 92 31. 61	8.8 10.3	0. 67 0. 55
012	17.4	31.01	10. 5	0.00
012	16.9	21 50	10.0	0.65
	16. 3 18. 1	31. 50 31. 71	10. 9 14. 4	0. 65 0. 67
013D	10. 1	31. / 1	14.4	0.07
0100	16 1	21 16	12 6	0.70
	16. 1 17. 3	31. 16 30. 68	13. 6 19. 3	0. 70 0. 87
016	11.0	30.00	13.5	0.01
010	15.6	20 12	17 0	0.60
	15. 6 17. 8	30. 13 29. 83	17. 8 30. 0	0. 69 1. 10
017D	11.0	20.00	50.0	1. 10
0170	15. 9	30. 01	24. 1	0.94
	17. 4	29. 52	32. 0	1. 53
018	11.7	20.02	52.0	1.00
010	15.8	29. 46	24. 2	0.88
	17. 5	31. 21	14. 2	0. 70
S1	11.0	J1. <u>J</u> 1	1 1. 2	
	16. 4	31. 63	11.0	0.69
	17. 1	30. 67	19. 6	0.86
S2	4 1 0 ±	50.01	10.0	0.00
	15. 7	30. 65	15. 6	0.70
	18. 4	32. 41	7.7	0. 70
S3	10. 1	<i>52</i> . TI		<u></u>
	17. 0	31. 71	8.4	0.60
	11.0	01. 11	0.4	0.00
S4				
	17. 4	32. 52	7. 3	0.63
	11.4	04.04	1.0	0.00

